High-dimensional Apollonian networks

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2006 J. Phys. A: Math. Gen. 391811
(http://iopscience.iop.org/0305-4470/39/8/003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.108
The article was downloaded on 03/06/2010 at 05:00

Please note that terms and conditions apply.

High-dimensional Apollonian networks

Zhongzhi Zhang ${ }^{1}$, Francesc Comellas ${ }^{2}$, Guillaume Fertin ${ }^{3}$ and Lili Rong ${ }^{1}$
${ }^{1}$ Institute of Systems Engineering, Dalian University of Technology, Dalian 116024, Liaoning, People's Republic of China
${ }^{2}$ Dep. de Matemàtica Aplicada IV, EPSC, Universitat Politècnica de Catalunya Av. Canal Olímpic s/n, 08860 Castelldefels, Barcelona, Catalonia, Spain
${ }^{3}$ LINA, Université de Nantes, 2 rue de la Houssinière, BP 92208,44322 Nantes Cedex 3, France
E-mail: dlutzzz063@yahoo.com.cn, comellas@mat.upc.es, fertin@lina.univ-nantes.fr and llrong@dlut.edu.cn

Received 3 November 2005, in final form 5 January 2006
Published 8 February 2006
Online at stacks.iop.org/JPhysA/39/1811

Abstract

We propose a simple algorithm which produces high-dimensional Apollonian networks with both small-world and scale-free characteristics. We derive analytical expressions for the degree distribution, the clustering coefficient and the diameter of the networks, which are determined by their dimension.

PACS numbers: 89.75.Hc, 89.75.Da, 89.20.Hh

1. Introduction

Since the ground-breaking papers by Watts and Strogatz on small-world networks [1] and Barabási and Albert on scale-free networks [2], the research interest in complex networks as an interdisciplinary subject has soared [3-5]. Complex networks describe many systems in nature and society, most of which share three apparent features: power-law degree distribution, small average path length (APL) and high clustering coefficient.

While many models [3-5] have been proposed to describe real-life networks, most of them are stochastic. However, new deterministic models with fixed degree distributions constructed by recursive methods have recently been introduced [6-12]. Deterministic models have the strong advantage that it is often possible to compute analytically their properties [13, 14], which may be compared with experimental data from real and simulated networks. Deterministic networks can be created by various techniques: modification of some regular graphs [15], addition and product of graphs [16], edge iterations [18] and other mathematical methods as in [17]. Concerning the problem of Apollonian packing, two groups independently introduced the Apollonian networks [19, 20] which have interesting properties like being scale-free, Euclidean, matching, space-filling and can be applied to porous media, polydisperse packings, road networks or electrical supply systems [19] and may also help to explain the properties of energy landscapes and the associated scale-free network of connected minima [20].

Figure 1. (a) A two-dimensional Apollonian packing of disks. (b) Construction of twodimensional Apollonian networks, showing the first four iterations steps.
(This figure is in colour only in the electronic version)

In this paper we present a simple iterative algorithm to generate high-dimensional Apollonian networks based on a similar idea as that of the recursive graphs proposed in [12]. The introduced algorithm can concretize the problems of abstract high-dimensional Apollonian packings. Using the algorithm we determine relevant characteristics of highdimensional Apollonian networks: the degree distribution, clustering coefficient and diameter, all of which depend on the dimension of Apollonian packings.

It should be pointed out that the concept of high-dimensional Apollonian networks has already been introduced in $[19,20]$. In these works, however, emphasis is placed on twodimensional Apollonian networks and their aim is to address the behaviour of dynamical processes [19] or provide a model to help understand the energy landscape networks [20-22]. Here, we focus on the producing algorithm, based on which we provide a detailed calculation of the topology characterization of high-dimensional Apollonian networks and we show that it depends on the dimension.

2. The construction of high-dimensional Apollonian networks

From the problem of Apollonian packing, a two-dimensional example of which is shown in figure 1(a), Andrade et al introduced Apollonian networks [19] which were independently proposed by Doye and Massen in [20]. Apollonian packing dates back to Apollonius of Perga who lived around 200 BC . The classic two-dimensional Apollonian packing is constructed by starting with three mutually touching circles, whose interstice is a curvilinear triangle to be filled. Then a circle is inscribed, touching all the sides of this curvilinear triangle. We call this the first iteration $t=1$ and the initial configuration is denoted by $t=0$. For subsequent iterations we indefinitely repeat the process for all the newly generated curvilinear triangles. In the limit of infinite iterations, the well-known two-dimensional Apollonian packing is obtained.

From the two-dimensional Apollonian packing, one can straightforwardly define a twodimensional Apollonian network [19, 20], where vertices are associated with the circles and two vertices are connected if the corresponding circles are tangent. Figure $1(b)$ shows the network based on the two-dimensional Apollonian packing. The two-dimensional Apollonian
network can be generalized to high-dimensions (d-dimensional, $d \geqslant 2$) [20] associated with other self-similar packings [23]. A comprehensive account is given next.

A d-dimensional $(d>2)$ Apollonian packing can be constructed iteratively in a similar way as shown in figure $1(a)$. Initially, we have $d+1$ mutually touching d-dimensional hyperspheres with a curvilinear open d-dimensional polyhedron (d-polyhedron) as their interstice. In the first iteration one d-hypersphere is added to fill the interstice of the initial configuration, such that it should touch each of the $d+1 d$-hyperspheres. The process is repeated for all the newly created curvilinear open d-dimensional polyhedrons in the successive iterations. In the limit of infinite iterations, the result is a d-dimensional Apollonian packing. If each d-hypersphere corresponds to a vertex and vertices are connected by an edge if the corresponding d-hyperspheres are in contact, then one gets a d-dimensional Apollonian network.

3. The iterative algorithm of high-dimensional Apollonian networks

In the iterative process for the construction of high-dimensional Apollonian networks at each iteration, for each new hypersphere added, $d+1$ new interstices are created in the associated Apollonian packing which will be filled in the next iteration. when building networks, we can say in equivalent words that for each new vertex added, $d+1$ new d-polyhedrons are generated in the network, into which vertices will be inserted in the next iteration. According to this process, we can introduce a general iterative algorithm to create high-dimensional Apollonian networks which is similar to the process that allow the construction of the recursive graphs introduced in [12].

Before introducing the algorithm we give the following definitions. A complete graph K_{d} (also referred in the literature as d-clique; see [24]) is a graph with d vertices, where there is no loop or multiple edge and every vertex is joined to every other by an edge. Generally speaking, two graphs are said to be isomorphic if the vertices and edges of one graph match up with vertices and edges of the other, and the edge matching be consistent with the vertex matching.

We denote the d-dimensional Apollonian network after t iterations by $A(d, t), d \geqslant 2$, $t \geqslant 0$. Then the d-dimensional Apollonian network at step t is constructed as follows: For $t=0, A(d, 0)$ is the complete graph K_{d+1} (or $(d+1)$-clique), and $A(d, 0)$ has $d+1$ vertices and $\frac{(d+1) d}{2}$ edges. For $t \geqslant 1, A(d, t)$ is obtained from $A(d, t-1)$ by adding for each of its existing subgraphs isomorphic to a $(d+1)$-clique and created at step $t-1$ a new vertex and joining it to all the vertices of this subgraph (see figure $1(b)$ for the case $d=2$). Then, at $t=1$, we add one new vertex and $d+1$ new edges to the graph, creating $d+1$ new K_{d+1}-cliques and resulting in the complete graph with $d+2$ vertices, denoted K_{d+2}. At $t=2$ we add $d+1$ new vertices, each of them connected to all the vertices of one of the $d+1$-cliques K_{d+1} created at $t=1$ introducing $(d+1)^{2}$ new edges, and so on.

Note that the addition of each new vertex leads to $d+1$ new $(d+1)$-cliques and $d+1$ new edges. So the number of new vertices and of edges at step t_{i} is $L_{v}\left(t_{i}\right)=(d+1)^{t_{i}-1}$ and $L_{e}\left(t_{i}\right)=(d+1)^{t_{i}}$, respectively. Therefore, similarly to many real-life networks such as the World Wide Web, the d-dimensional Apollonian network is a growing network, whose number of vertices increases exponentially with time.

Thus we can easily see that at step t, the Apollonian network $A(d, t)$ has

$$
\begin{equation*}
N_{t}=(d+1)+\sum_{t_{i}=1}^{t} L_{v}\left(t_{i}\right)=\frac{(d+1)^{t}-1}{d}+d+1 \tag{1}
\end{equation*}
$$

vertices and

$$
\begin{equation*}
|E|_{t}=\frac{d(d+1)}{2}+\sum_{t_{i}=1}^{t} L_{e}\left(t_{i}\right)=\frac{d(d+1)}{2}+\frac{(d+1)^{t+1}-d-1}{d} \tag{2}
\end{equation*}
$$

edges.
The average degree \bar{k}_{t} is then

$$
\begin{equation*}
\bar{k}_{t}=\frac{2|E|_{t}}{N_{t}}=\frac{2(d+1)^{t+1}+d^{3}+d^{2}-2 d-2}{(d+1)^{t}+d^{2}+d-1} \tag{3}
\end{equation*}
$$

For large t it is approximately $2(d+1)$. We can see when t is large enough the resulting networks are sparse graphs as many real-world networks whose vertices have many fewer connections than is possible.

4. Relevant characteristics of high-dimensional Apollonian networks

Below we will find that the dimension d is a tunable parameter controlling all the relevant characteristics of the d-dimensional Apollonian network.

4.1. Degree distribution

When a new vertex i is added to the graph at step $t_{i}\left(t_{i} \geqslant 1\right)$, it has degree $d+1$ and forms $d+1$ new $(d+1)$-cliques. From the iterative algorithm, we can see that each new neighbour of i generated d new $(d+1)$-cliques with i as one vertex of them. In the next iteration, these $(d+1)$-cliques will introduce new vertices that are connected to the vertex i. Let $k_{i}(t)$ be the degree of i at step $t\left(t>t_{i}+1\right)$. Then, as in [20],

$$
\begin{equation*}
\Delta k_{i}(t)=k_{i}(t)-k_{i}(t-1)=d \Delta k_{i}(t-1) \tag{4}
\end{equation*}
$$

combining the initial condition $k_{i}\left(t_{i}\right)=d+1$ and $\Delta k_{i}\left(t_{i}+1\right)=d+1$, we obtain

$$
\begin{equation*}
\Delta k_{i}(t)=(d+1) d^{t-t_{i}-1} \tag{5}
\end{equation*}
$$

and the degree of vertex i becomes

$$
\begin{equation*}
k_{i}(t)=k_{i}\left(t_{i}\right)+\sum_{t_{m}=t_{i}+1}^{t} \Delta k_{i}\left(t_{m}\right)=(d+1)\left(\frac{d^{t-t_{i}}-1}{d-1}+1\right) \tag{6}
\end{equation*}
$$

The distribution of all vertices and their degrees at step t is given in table 1. It should be mentioned that here we do not give the detailed degree evolution process of the $d+1$ initial vertices created at step 0 and just list the evolution result from all the other vertices. But when the network becomes very large, these few initial vertices have almost no effect on the network topology characteristics. From table 1 we can see that the degree spectrum of the graph is discrete and some values of the degree are absent. To relate the exponent of this discrete degree distribution to the standard γ exponent as defined for continuous degree distribution, we use a cumulative distribution $P_{\text {cum }}(k) \equiv \sum_{k^{\prime} \geqslant k} N\left(k^{\prime}, t\right) / N_{t} \sim k^{1-\gamma}$. Here k and k^{\prime} are points of the discrete degree spectrum. The analytic computation details are given as follows.

For a degree k,

$$
k=(d+1)\left(\frac{d^{t-l}-1}{d-1}+1\right)
$$

there are $(d+1)^{l-1}$ vertices with this exact degree, all of which were added at step l.

Table 1. Distribution of vertices and their degrees for $A(d, t)$ at step t.

Number of vertices	Degree
$d+1$	$\sum_{j=0}^{t-1} d^{j}+d$
1	$(d+1)\left(\sum_{j=0}^{t-2} d^{j}+1\right)$
$d+1$	$(d+1)\left(\sum_{j=0}^{t-3} d^{j}+1\right)$
$(d+1)^{2}$	$(d+1)\left(\sum_{j=0}^{t-4} d^{j}+1\right)$
\cdots	\cdots
$(d+1)^{t-3}$	$(d+1)(d+1+1)$
$(d+1)^{t-2}$	$(d+1)(d+1)$
$(d+1)^{t-1}$	$d+1$

All vertices introduced at step l or earlier have this and a higher degree. So we have

$$
\sum_{k^{\prime} \geqslant k} N\left(k^{\prime}, t\right)=(d+1)+\sum_{s=1}^{l} L_{v}(s)=\frac{(d+1)^{l}-1}{d}+d+1 .
$$

As the total number of vertices at step t is given in equation (1) we have

$$
\begin{align*}
{\left[(d+1)\left(\frac{d^{t-l}-1}{d-1}+1\right)\right]^{1-\gamma} } & =\frac{\frac{(d+1)^{l}-1}{d}+d+1}{\frac{(d+1)^{t}-1}{d}+d+1} \\
& =\frac{(d+1)^{l}+d(d+1)-1}{(d+1)^{t}+d(d+1)-1} . \tag{7}
\end{align*}
$$

Therefore, for large t, we obtain

$$
\left(d^{t-l}\right)^{1-\gamma}=(d+1)^{l-t}
$$

and

$$
\begin{equation*}
\gamma \approx 1+\frac{\ln (d+1)}{\ln d} \tag{8}
\end{equation*}
$$

so that $2<\gamma<2.58496$.
We note that this value has been obtained previously by Doye and Massen in [20]. Also, note that when t gets large, the maximal degree of a vertex roughly equals to $d^{t-1} \sim N_{t}^{\ln d / \ln (d+1)}=N_{t}^{1 /(\gamma-1)}$.

4.2. Clustering distribution

The clustering coefficient [1] of a given vertex is the ratio of the total number of edges that actually exist between all its k nearest neighbours and the potential number of edges $k(k-1) / 2$ between them. The clustering coefficient of the whole network is obtained averaging over all its vertices. We can derive analytical expressions for the clustering $C(k)$ for any vertex with degree k.

When a vertex is created it is connected to all the vertices of a $(d+1)$-clique whose vertices are completely interconnected. It follows that a vertex with degree $k=d+1$ has a clustering coefficient of one because all the $(d+1) d / 2$ possible links between its neighbours actually exist. After that, if its degree increases by one, then its new neighbour must link to its d existing neighbours. Thus for a vertex v of degree k, the exact expression for its clustering coefficient is

$$
\begin{equation*}
C(k)=\frac{\frac{d(d+1)}{2}+d(k-d-1)}{\frac{k(k-1)}{2}}=\frac{2 d\left(k-\frac{d+1}{2}\right)}{k(k-1)} \tag{9}
\end{equation*}
$$

depending on the degree k and dimension d. Using this result, we can now compute the clustering of the graph at step t, which is $\bar{C}_{t}=S_{t} / N_{t}$, where N_{t} is number of vertices at step t which is provided by equation (1) and S_{t} represents the sum of clustering coefficient for all vertices given by

$$
\begin{equation*}
S_{t}=(d+1) \frac{2 d\left(D_{0}-\frac{d+1}{2}\right)}{D_{0}\left(D_{0}-1\right)}+\sum_{q=1}^{t} \frac{2 d\left(D_{q}-\frac{d+1}{2}\right) L_{v}(q)}{D_{q}\left(D_{q}-1\right)} \tag{10}
\end{equation*}
$$

where $D_{0}=\frac{d^{t}-1}{d-1}+d$ and $D_{q}=(d+1)\left(\frac{d^{t-q}-1}{d-1}+1\right)$ given by equation (6) are the degrees of the vertices created at steps 0 and q, respectively. One can easily prove that for $t \geqslant 7$ and for any $d \geqslant 2$ the following relation holds true:

$$
\begin{equation*}
\bar{C}_{t}>\frac{3 d-2}{3 d-1} \tag{11}
\end{equation*}
$$

Therefore the clustering coefficient of high-dimensional Apollonian networks is very large. Similarly to the power exponent γ of the degree distribution, the clustering is also tunable by simply changing the value of the control parameter d. From equation (11), one can see that the clustering coefficient increases with d and approaches a limit of 1 when d gets large. In the special cases where $d=2$ and $d=3, \bar{C}$ equals constant asymptotic values 0.8284 (see also [19]) and 0.8852 , respectively.

4.3. Diameter

The diameter of a network characterizes the maximum communication delay in the network and is defined as the longest shortest path between all pairs of vertices. In what follows, the notations $\lceil x\rceil$ and $\lfloor x\rfloor$ express the integers obtained by rounding x to the nearest integers towards infinity and minus infinity, respectively. Now we compute the diameter of $A(d, t)$, denoted by $\operatorname{diam}(A(d, t))$, for $d \geqslant 2$:

Step 0 and 1. The diameter is 1.
Steps 2 to $\left\lceil\frac{d}{2}\right\rceil+1$. In this case, the diameter is 2 , since any new vertex is by construction connected to a $(d+1)$-clique, and since any $(d+2)$-clique during those steps contains at least the vertex created at step 1 , which is from the initial clique K_{d+2} or $A(d, 1)$ obtained after step 1 ; thus the diameter is 2 .
Steps $\left\lceil\frac{d}{2}\right\rceil+2$ to $d+2$. In any of those steps, some newly added vertices might not share a neighbour in the original clique K_{d+2} obtained after step 1; however, any newly added vertex is connected to at least one vertex of the initial clique K_{d+2}. Thus, the diameter is equal to 3 .
Further steps. Clearly, at each step $t \geqslant d+3$, the diameter always lies between a pair of vertices which have just been created at this step. We will call the newly created vertices 'outer' vertices. At any step $t \geqslant d+3$, we note that an outer vertex cannot be connected with two or more vertices that were created during the same step $0<t^{\prime} \leqslant t-1$. Moreover, by construction no two vertices that were created during a given step are neighbours; thus they cannot be part of the same $(d+2)$-clique. Thus, for any step $t \geqslant d+3$, some outer vertices are connected with vertices which appeared at pairwise different steps. Thus, there exists an outer vertex v_{t} created at step t, which is connected to vertices $v_{i}, 1 \leqslant i \leqslant t-1$, which all are pairwise distinct. We conclude that v_{t} is necessarily connected to a vertex that was created at a step $t_{0} \leqslant t-d-1$. If we repeat this argument, then we obtain an upper bound on the distance from v_{t} to the initial clique K_{d+2}. Let $t=\alpha(d+1)+p$, where $2 \leqslant p \leqslant d+2$. Then, we see that v_{t} is at distance at most $\alpha+1$ from a vertex in K_{d+2}. Hence any two vertices v_{t} and
w_{t} in $A(d, t)$ lie at distance at most $2(\alpha+1)+1$; however, depending on p, this distance can be reduced by 1 , since when $p \leqslant\left\lceil\frac{d}{2}\right\rceil+1$, we know that two vertices created at step p share at least a neighbour in K_{d+2}. Thus, when $2 \leqslant p \leqslant\left\lceil\frac{d}{2}\right\rceil+1, \operatorname{diam}(A(d, t)) \leqslant 2(\alpha+1)$, while when $\left\lceil\frac{d}{2}\right\rceil+2 \leqslant p \leqslant d+2, \operatorname{diam}(A(d, t)) \leqslant 2(\alpha+1)+1$. One can see that these distance bounds can be reached by pairs of outer vertices created at step t. More precisely, those two vertices v_{t} and w_{t} share the property that they are connected to d vertices that appeared respectively at steps $t-1, t-2, \ldots t-d-1$.

Based on the above arguments, one can easily see that for $t>d+2$, the diameter increases by 2 every $d+1$ steps. More precisely, we have the following result, for any $d \geqslant 2$ and $t \geqslant 2$ (when $t=1$, the diameter is clearly equal to 1):

$$
\operatorname{diam}(A(d, t))=2\left(\left\lfloor\frac{t-2}{d+1}\right\rfloor+1\right)+f(d, t)
$$

where $f(d, t)=0$ if $t-\left\lfloor\frac{t-2}{d+1}\right\rfloor(d+1) \leqslant\left\lceil\frac{d}{2}\right\rceil+1$, and 1 otherwise.
In the limit of large $t, \operatorname{diam}(A(d, t)) \sim \frac{2 t}{d+1}$, while $N_{t} \sim(d+1)^{t-1}$, thus the diameter is small and scales logarithmically with the network size.

5. Conclusion and discussion

In conclusion, we have proposed a general iterative algorithm to produce high-dimensional Apollonian networks associated with high-dimensional packings. The networks present the typical characteristics of real-life networks in nature and society as they are small-world and have a power-law degree distribution. We compute analytical expressions for the degree distribution, the clustering coefficient, and the diameter of the networks, all of which are determined by the dimension of the associated Apollonian packings. The high-dimensional Apollonian networks introduced here, and the consideration of the method presented in [25], allow the construction of high-dimensional random Apollonian networks [26]. In addition, it should be worth studying in detail physical models such as Ising models [27] and processes such as percolation, spreading, searching and diffusion that take place on the higher-dimensional Apollonian networks to know also their relation with the dimension.

Acknowledgments

This research was supported by the Natural Science Foundation of China (grant no 70431001). Support for FC was provided by the Secretaria de Estado de Universidades e Investigación (Ministerio de Educación y Ciencia), Spain, and the European Regional Development Fund (ERDF) under project TIC2002-00155.

References

[1] Watts D J and Strogatz H 1998 Nature 393440
[2] Barabási A-L and Albert R 1999 Science 286509
[3] Albert R and Barabási A-L 2002 Rev. Mod. Phys. 7447
[4] Dorogvtsev S N and Mendes J F F 2002 Adv. Phys. 511079
[5] Newman M E J 2003 SIAM Rev. 45167
[6] Barabási A-L, Ravasz E and Vicsek T 2001 Physica A 299559
[7] Iguchi K and Yamada H 2005 Phys. Rev. E 71036144
[8] Dorogovtsev S N, Goltsev A V and Mendes J F F 2002 Phys. Rev. E 65066122
[9] Jung S, Kim S and Kahng B 2002 Phys. Rev. E 65056101
[10] Ravasz E and Barabási A-L 2003 Phys. Rev. E 67026112
[11] Noh J D 2003 Phys. Rev. E 67045103
[12] Comellas F, Fertin G and Raspaud A 2004 Phys. Rev. E 69037104
[13] Rozenfeld H, Kirk J, Bollt E and ben-Avraham D 2005 J. Phys. A: Math. Gen. 384589
[14] Bollt E and ben-Avraham D 2005 New J. Phys. 726
[15] Comellas F, Ozón J and Peters J G 2000 Inf. Process. Lett. 7683
[16] Comellas F and Sampels M 2002 Physica A 309231
[17] Zhou T, Wang B H, Jiang P Q, Hui P M and Chan K P 2004 Preprint cond-mat/0405258
[18] Zhang Z Z, Rong L L and Guo C H 2005 Preprint cond-mat/0502335 (Physica A at press)
[19] Andrade J S Jr, Herrmann H J, Andrade R F S and da Silva L R 2005 Phys. Rev. Lett. 94018702
[20] Doye J P K and Massen C P 2005 Phys. Rev. E 71016128
[21] Doye J P K 2002 Phys. Rev. Lett. 88238701
[22] Doye J P K and Massen C P 2005 J. Chem. Phys. 122084105
[23] Mahmoodi Baram R, Herrmann H J and Rivier N 2004 Phys. Rev. Lett. 92044301
[24] West D B 2001 Introduction to Graph Theory (Upper Saddle River, NJ: Prentice-Hall)
[25] Zhou T, Yan G and Wang B H 2005 Phys. Rev. E 71046141
[26] Zhang Z Z, Rong L L and Comellas F 2005 Preprint cond-mat/0502591 (Physica A at press)
[27] Andrade R F S and Herrmann H J 2005 Phys. Rev. E 71056131

